James Webb Space Telescope
James Webb Space Telescope
The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a part of NASA's ongoing Flagship Program which has developed in cooperation with the European Space Agency and Canadian Space Agency. The space telescope is under construction and scheduled to launch in October 2018.
JWST will offer unprecedented resolution and sensitivity from long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared (0.6 to 27 micrometers). While the Hubble Space Telescope has a 2.4-meter (7.9 ft) mirror, the JWST features a larger and segmented 6.5-meter-diameter (21 ft 4 in) primary mirror and will be located near the Earth–Sun L2 point. A large sunshield will keep its mirror and four science instruments below 50 K (−220 °C; −370 °F).
JWST's capabilities will enable a broad range of investigations across the fields of astronomy and cosmology.[5] One particular goal involves observing some of the most distant events and objects in the Universe, such as the formation of the first galaxies. These types of targets are beyond the reach of current ground and space-based instruments. Another goal is understanding the formation of stars and planets. This will include direct imaging of exoplanets, and novas.
JWST will offer unprecedented resolution and sensitivity from long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared (0.6 to 27 micrometers). While the Hubble Space Telescope has a 2.4-meter (7.9 ft) mirror, the JWST features a larger and segmented 6.5-meter-diameter (21 ft 4 in) primary mirror and will be located near the Earth–Sun L2 point. A large sunshield will keep its mirror and four science instruments below 50 K (−220 °C; −370 °F).
JWST's capabilities will enable a broad range of investigations across the fields of astronomy and cosmology.[5] One particular goal involves observing some of the most distant events and objects in the Universe, such as the formation of the first galaxies. These types of targets are beyond the reach of current ground and space-based instruments. Another goal is understanding the formation of stars and planets. This will include direct imaging of exoplanets, and novas.
Comments
Post a Comment