Hawking Radiation
Hawking radiation, also known as Hawking–Zel'dovich radiation,is blackbody radiation that is predicted to be released by black holes, due to quantum effects near the event horizon. It is named after the physicist Stephen Hawking, who provided a theoretical argument for its existence in 1974, and sometimes also after Jacob Bekenstein, who predicted that black holes should have a finite entropy. Hawking's work followed his visit to Moscow in 1973 where the Soviet scientists Yakov Zeldovich and Alexei Starobinsky showed him that, according to the quantum mechanical uncertainty principle, rotating black holes should create and emit particles.Hawking radiation reduces the mass and energy of black holes and is therefore also known as black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish. Micro black holes are predicted to be larger emitters of radiation than larger black holes and should shrink and dissipate faster.
In June 2008, NASA launched the Fermi space telescope, which is searching for the terminal gamma-ray flashes expected from evaporating primordial black holes. In the event that speculative large extra dimension theories are correct, CERN's Large Hadron Collider may be able to create micro black holes and observe their evaporation. No such micro black hole has ever been observed at CERN.
In September 2010, a signal that is closely related to black hole Hawking radiation (see analog gravity) was claimed to have been observed in a laboratory experiment involving optical light pulses. However, the results remain unverified and debatable.Other projects have been launched to look for this radiation within the framework of analog gravity.
Comments
Post a Comment