Gravitational Waves & LIGO
Gravitational Waves & LIGO
This blog explains Gravitational Waves in Hindi language. It also explains LIGO in Hindi as well as How LIGO observatory Works.
What are gravitational waves?
Put simply, gravitational waves are ripples in the otherwise tough, stiff fabric of spacetime produced by the most violent phenomena the cosmos can offer—things like exploding stars and collisions between ultradense neutron stars or merging black holes. Gravitational waves are washing over Earth all the time, but our instruments have not been sensitive enough to detect them until very recently.
Who first came up with the idea of gravitational waves?
In 1916, Albert Einstein suggested that gravitational waves could be a natural outcome of his general theory of relativity, which says that very massive objects distort the fabric of time and space—an effect we perceive as gravity. Accordingly, very massive objects spiraling toward each other should wrinkle space-time and send those distortions across the cosmos, like ripples spreading across a pond at the speed of light.
What are gravitational waves?
Put simply, gravitational waves are ripples in the otherwise tough, stiff fabric of spacetime produced by the most violent phenomena the cosmos can offer—things like exploding stars and collisions between ultradense neutron stars or merging black holes. Gravitational waves are washing over Earth all the time, but our instruments have not been sensitive enough to detect them until very recently.
Who first came up with the idea of gravitational waves?
In 1916, Albert Einstein suggested that gravitational waves could be a natural outcome of his general theory of relativity, which says that very massive objects distort the fabric of time and space—an effect we perceive as gravity. Accordingly, very massive objects spiraling toward each other should wrinkle space-time and send those distortions across the cosmos, like ripples spreading across a pond at the speed of light.
Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool.Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton, equivalent to measuring the distance from Earth to Proxima Centauri (4.0208x1013km)with an accuracy smaller than the width of a human hair.
The initial LIGO observatories were funded by the National Science Foundation (NSF) and were conceived, built, and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected.
The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users as of December 2016.
LIGO is the largest and most ambitious project ever funded by the NSF.
As of March 2018, LIGO has made six detections of gravitational waves, of which the first five were colliding black-hole pairs. The sixth detected event, on August 17, 2017, was the first detection of a collision of two neutron stars, which simultaneously produced optical signals detectable by conventional telescopes.
Comments
Post a Comment